10,807 research outputs found

    Mergers in Higher Education: A Case Study of Organizational Culture, Communication, and Conflict Management Strategies in the University System of Georgia

    Get PDF
    Abstract By 2018, the University System of Georgia will have 18 institutions merged with each other. This qualitative case study focuses on how organizational culture, communication strategies, and conflict management strategies affect a merger in higher education in the state of Georgia. This study attempts to answer the following questions: How is organizational culture preserved and/or changed in the process of consolidation? How was information about consolidation communicated to various group of people? How do various groups of people make sense of the information provided regarding consolidation? What aspects of consolidation generated the most conflicts? What conflict management strategies were adopted by administrators and faculty leaders in order to solve conflicts during consolidation? Based on 35 in-depth interviews with faculty, staff, and administrators, the study reveals how new organizational cultures emerge, how to manage different types of conflicts, and how to make sense of organizational changes during the complex situations of mergers in higher education. The results show how organizational culture, communication, and conflict management strategies are closely connected with each other, and can have a major impact on the merger process in higher education. The findings of this study may have policy implications, and provide guidance to future institutions and decision makers who are considering mergers in higher education

    A Novel Pre-fluorescent Nitroxide Probe for the Highly Sensitive Determination of Peroxyl and Other Radical Oxidants

    Get PDF
    ABSTRACT Peroxyl and other radical oxidants react with stable cyclic nitroxides, such as the piperidinyl and pyrrolidinyl nitroxides to form initially the one electron oxidation product, the oxoammonium cation. For most of the nitroxides studied thus far, the oxoammonium cation can in part be regenerated to the nitroxide through reduction by solution constituents. The reaction mechanisms, however, remain a matter of debate. Further, the highly-sensitive, quantitative determination of peroxyl and other radical oxidants has yet to be achieved, posing a major hurdle to a further understanding of the impact of peroxyl radicals in many biological and environmental processes. A unique, amino-pyrrolidinyl nitroxide, 3-amino-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (3-ap) is shown to undergo an irreversible reaction with peroxyl radicals and other radical oxidants to generate a diamagnetic product. When a fluorophore, fluorescamine is covalently linked through the amino group on the nitroxide, the resulting compound (3-apf, or I) has very low fluorescence quantum yield. Upon reaction with peroxyl and other radical oxidants, the quantum yield of the product increases dramatically (~100 fold), and thus 3-ap or 3-apf can be used as a highly sensitive and versatile probe to determine oxidant production optically, either by monitoring the changes in fluorescence intensity using a spectrofluorometer, by HPLC analysis with fluorescence detection, or by a combination of both approaches. By changing the [O2]/[nitroxide] ratio, it is shown that peroxyl radicals can be detected and quantified preferentially in the presence of other radical oxidants, such as *NO2 and CO3*-. When decreasing the [O2]/[nitroxide] ratio, the oxidation product decreases, with a concomitant increase of the alkoxylamine product resulting from reaction of 3-ap (3-apf) with carbon centered radicals. Preliminary studies suggest that the reactions of 3-ap and 3-apf with peroxyl radical produce different final products. High resolution mass spectrometry and NMR studies indicate that 3-ap is oxidized to form a cyclic peroxide structure, while 3-apf is oxidized to form a cyclic -NH-O- structure, with this difference resulting possibly from the presence of the fluorescamine moiety in 3-apf. Detection of photochemically produced peroxyl radicals is achieved by employing 3-amino-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (3-ap) alone, followed by derivatization with fluorescamine, while detection of thermally-generated peroxyl radicals employs 3-apf. Preliminary applications include the detection of peroxyl radicals generated thermally in soybean phosphatidylcholine liposomes by 3-apf and produced photochemically in tap water by 3-ap
    • …
    corecore